SURGICAL INSTRUMENT
PURCHASE AND CARE GUIDE

Guidance for purchasing and caring for surgical instruments from ABHI's Surgical Instruments Special Interest Section Group
This booklet is designed to help healthcare providers achieve the best whole life value for money in their purchasing decisions.

Surgical instruments are a critical component of surgical procedures. It is important that purchasers are well informed, to ensure patient safety as well as best value.

This Guide is an educational and training tool. It helps improve awareness and understanding of how surgical instruments are made, the standards which apply to them and the quality of the instruments.

By enabling effective procurement, we hope to help healthcare providers achieve the best return on their investment, while putting patients at the heart of decision-making.

"Quality is always top and non-negotiable"

Lord Carter Health and Care Show, July 2016
UNDERSTANDING QUALITY
BUYING THE RIGHT INSTRUMENT IS A COLLECTIVE RESPONSIBILITY

Purchasing Surgical Instruments needs to be a co-ordinated process with input from the appropriate health professionals before and after purchase:

At all stages:
- Location
- Facilities
- Equipment
- Management
- Policies/Procedures

The surgeon, theatre staff, sterilisation and decontamination teams are all essential to surgical instrument purchasing decisions. Their feedback is critical in making the right decision.

Health Technical Memorandum 01-01: Management and decontamination of surgical instruments (medical devices) used in acute care (or as appropriate)
Surgical instruments are governed by a number of standards including, but not limited to:

<table>
<thead>
<tr>
<th>Standard</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Medical Devices Directive 93/42/EEC</strong></td>
<td>MDD – this Directive includes the essential requirements such as CE marks to be followed by manufacturers.</td>
</tr>
<tr>
<td><strong>BS 5194-4:1989</strong></td>
<td>For the specifications of instruments with pivot points.</td>
</tr>
<tr>
<td><strong>ISO 7153-1:2001 BS 5194-1:1991</strong></td>
<td>The Standard for the composition of the different materials and steel grades used.</td>
</tr>
<tr>
<td><strong>BS 5194-4:1985</strong></td>
<td>For the specifications of scissors, shears, and other cutting instruments.</td>
</tr>
<tr>
<td><strong>ISO 13485</strong></td>
<td>Requirements for a quality management system, where an organisation needs to demonstrate its ability to provide medical devices.</td>
</tr>
<tr>
<td><strong>BS 5194-3:1995</strong></td>
<td>For the specifications of dissecting forceps.</td>
</tr>
<tr>
<td><strong>CE Marking</strong></td>
<td>On every device, look for a CE mark, the name of the manufacturer and a traceability code. Be aware that a CE mark is a sign of compliance with MDD however and should not be taken as an automatic sign of quality.</td>
</tr>
</tbody>
</table>
UNDERSTANDING QUALITY
KNOW YOUR MATERIALS

Most surgical instruments start life as forgings or “blanks”. They are governed by two International Standards for material specification: DIN 17442 and DIN EN 10088-3 8/95.

Surgical instruments are mainly made from two types of stainless steel: martensitic and austenitic. Some are made from titanium. The boxes on the right illustrate the types of instrument materials.

- **Martensitic** is magnetic and contains up to 1% carbon which allows the instrument to be heat-treated
- **Austenitic** is the most common type of stainless steel and is highly versatile

ISO 7153-1 has a full list of the suitable grades of stainless steel available.

---

**Martensitic Grade B-420 S29**
- **Used for non-cutting instruments**, e.g. artery forceps
- **Hardness**: 40-48 HRC
- **Carbon content**: 0.16-0.25%
- **Chromium content**: 12-14%

**Martensitic Grade C or D-420 S45**
- **Used for cutting instruments**, e.g. scissors & gouges
- **Hardness**: 50-58 HRC
- **Carbon content**: 0.35-0.45%
- **Chromium content**: 12-14%

**Austenitic Grade 304 S15**
- **Used for instruments which do not require hardening**, e.g. dental tweezers and holloware
- **Hardness**: 40-48 HRC
- **Carbon content**: 0.07-0.15%
- **Chromium content**: 16-19%
- **Nickel content**: 8-11%

**Titanium**
- **Used for Ophthalmic & Microsurgery instruments**
- Ti-6Al-4V ELI or grade 23 titanium
MANUFACTURING PROCESSES

1. MACHINING
   Metal cutters mill the forgings to create a box joint, serrations, teeth, or racks. This is a critical stage in ensuring the functionality of a device and making sure that it will perform as the surgeon expects.

2. FITTING AND ASSEMBLY
   The various parts of an instrument are held with screws and rivets. Using a series of grindstones and lathes, the instrument is fashioned to the correct size, weight and dimensions of the intended pattern.

3. HARDENING
   Before instruments are machined, they are annealed to soften them, prolonging the life of the cutters and helping form the instrument correctly. Then they’re re-hardened, often using a vacuum hardening process.

4. FINISHING AND POLISHING
   The hardening process creates a black oxide layer which must be removed. This is done by eitherrumbling the instruments or polishing and glazing them to a fine finish.

5. INSPECTION, MARKING AND TRACEABILITY
   Before being placed on the market, instruments should be inspected for their functional and cosmetic qualities. A CE mark, the manufacturer’s name, and a traceability code on every device.
   Although the manufacturer’s name marked on a device is not a requirement of the Medical Devices Directive, we feel that this is the best way to ensure that the product guarantee can be maintained and enforced.
There are a huge variety of features which appear on reusable surgical instruments. Here are a few common features and what to look for in a quality item:

- Teeth and prongs should be sharp and mesh exactly when jaws close
- Serrations on both jaws should be identically shaped and mesh exactly
- When pressure is released, the teeth, prongs, and serrations should part freely without catching
- No slippage in Needleholder jaws
- Should be symmetrical
- Rectangular section should give maximum strength to the joint
- Should avoid unnecessary gaps
- Use of countersink prevents rivet from moving
- Joint should move smoothly, not too tight, not too loose
- It should be possible to open and close the joint easily with 2 fingers
IDENTIFYING COMMON INSTRUMENT FEATURES & WHERE THEY MAY BE SEEN

**Box Joint**

**Found on:**
- Spencer Wells artery forceps
- Halstead Mosquisto artery forceps
- Crile artery forceps

**Screw Joint**

**Found on:**
- Mayo scissors
- Metzenbaum scissors
- McIndoe scissors
- Stevens scissors

**Ratchet**

**Found on:**
- Norfolk and Norwich retractors
- Travers retractors
- West and Weitlander retractors

**Teeth**

**Found on:**
- Littlewoods tissue forceps
- Allis tissue tissue forceps
- Lanes tissue forceps

**Rack**

**Found on:**
- Mayo-Hegar needle holder
- Spencer Wells artery forceps

**Scissor Blades**

**Found on:**
- Mayo scissors
- Metzenbaum scissors
- Dressing scissors scissors
**Lumen**

**Found on:**
- American, Adson, Magill & Zoellner suction tubes

---

**Serrations**

**Found on:**
- Artery forceps

---

**Atraumatic Teeth**

**Found on:**
- Debakey clamps and forceps
- Derra & Cooley vascular clamps

---

**Finish**

**Found on:**
- Bright polished or satin finished steel

---

**Tungsten Carbide Tips**

**Found on:**
- Needle holders for durability

---

**Bows**

**Found on:**
- Scissors, needle holders & artery forceps
MAINTAINING HIGH QUALITY
A GUIDE TO REPROCESSING RE-USABLE SURGICAL INSTRUMENTS

Wherever possible, do not allow blood, debris or bodily fluids to dry on instruments. To prolong their life, reprocess immediately after use. If that’s not possible, use an enzymatic foam spray to help prevent soil from drying.

To prepare for decontamination, reprocess all instruments as soon as practicable following use. Disassemble only where intended, without the use of tools, unless specifically made available with the instrument and provided by the manufacturer.

Automated Cleaning
Use CE marked or validated washer-disinfector machines and low-foaming, non-ionising cleaning agents and detergents. Follow the manufacturers’ instructions for use, warnings, concentrations, and recommended cycles.

Load instruments carefully, with box joints and hinges open, and so that any fenestrations can drain.

Place heavy instruments with care in the bottom of containers. Do not overload wash baskets.

Place instruments with concave surfaces facing down to prevent pooling of water.

Use appropriate attachments to flush in side reamers, and devices with lumens or cannula.

Ensure that soft, high purity water which is controlled for bacterial endotoxins is used in the final rinse stage.

Note Automated Cleaning may not be suitable for all lumens and cannula, in which case clean manually with a water jet gun, if available, and an appropriate brush and/or stilette that reaches the depth of the feature.

After manually cleaning, pass all devices through an automatic cleaning cycle to achieve disinfection.
After cleaning, visually inspect all:
- Surfaces
- Cannulations
- Holes
- Joints

Lumens for complete removal of soil and fluids. If any soil or fluid is still visible, return the instrument for repeat decontamination.

Ensure that instruments are dry before sterilisation. Always follow the instructions of the machine manufacturer. Use a CE marked or validated vacuum autoclave operating at 134-137°C 2.25 bar for 3 minutes minimum holding time.

When sterilising multiple instruments in one cycle, always make sure that the stated maximum load is not exceeded.

IMPORTANT NOTE: This is not comprehensive. For a full, validated reprocessing guide, speak to your instrument supplier and follow current MHRA guidelines for reprocessing instruments.
# MAINTAINING HIGH QUALITY CARE & MAINTENANCE TIPS

For full guidance see www.a-k-i.org ‘Red Brochure’

## BROKEN/CRACKED BOX JOINTS

<table>
<thead>
<tr>
<th>Type</th>
<th>Cause</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tension stress</td>
<td>Heating and cooling in sterilisation process</td>
<td>Close instrument to first notch only during sterilisation</td>
</tr>
<tr>
<td>Forced stress</td>
<td>Overloading instruments</td>
<td>Ensure correct device and attachment is being used</td>
</tr>
<tr>
<td>General stress</td>
<td>Build up of blood and debris in box joint</td>
<td>Ensure instruments are cleaned in open position during washing and disinfection</td>
</tr>
</tbody>
</table>

## DISCOLOURATION

<table>
<thead>
<tr>
<th>Type</th>
<th>Cause</th>
<th>Solution</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water spots</td>
<td>Light coloured, often with sharply defined edges</td>
<td>Final rinse or sterilisation water supply contains high concentration of minerals</td>
<td>Use demineralised water in final rinse, and pure steam in sterilisation</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yellow brown to dark brown spots</td>
<td>Debris has dried on the device before cleaning or hasn't been removed due to poorly performing detergents</td>
<td>Remove by thoroughly scrubbing with a good detergent, otherwise corrosive pitting will occur</td>
<td></td>
</tr>
<tr>
<td>Oxidisation spots</td>
<td>Light coloured, without sharply defined edges</td>
<td>Final rinse or sterilisation water supply contains high concentration of heavy metal ions and/or silicates</td>
<td>Use demineralised water in final rinse, and pure steam in sterilisation</td>
</tr>
<tr>
<td>Other causes of discolouration</td>
<td>Insufficient rinsing off detergents and disinfectants</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chlorides</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Water droplets slowly condensing on instruments during sterilisation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inferior detergent</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### Pitting corrosion

**Cause 1** Excessive chloride concentrations

**Solution** Use demineralised water

**Cause 2** Prolonged exposure to saline solutions (blood, debris or contaminated disinfectant or detergent) where bacterial activity creates acidic residue

**Solution** Clean instruments as soon as possible after use

### Abrasion corrosion

**Cause** Build up of debris stops devices from opening and operating smoothly, causing destruction of passivation layer at joints and crevices

**Solution** Ensure instruments are cleaned in open position & lubricate regularly

### Contaminated steam corrosion

**Cause** Rusty steam in sterilisation process

**Solution** Regular validation and maintenance of decontamination equipment

### Surface corrosion

**Cause** Damage to passivation layer

**Solution** Avoid use of strong acid, alkaline or caustic solutions

**NB:** Aluminium is particularly susceptible

### Spreading corrosion

**Cause** Instruments sterilised with already rusty devices - rust is transferred through the detergent solutions

**Solution** Separate rusty devices from “healthy” ones

---

**The Red Brochure**

The Instrument Reprocessing Working Group was set up in 1976. They have produced a Surgical Instrument guidance document for the past 40 years. This provides exhaustive guidance on all aspects of surgical instrument care and best practice. [www.a-k-i.org](http://www.a-k-i.org)
ETHICAL SUPPLY

Ethical Manufacturing & the NHS Supply Chain’s Labour Standards Assurance System (LSAS)

ABHI has its own code of business practice and we support the ethical sourcing of products. The Surgical Instruments SIS Group worked with NHS Supply Chain as part of the 2012 (and pending 2017) Surgical Instruments Framework Agreement to launch its Labour Standards Assurance System.

LSAS is a matrix of ethical requirements designed by NHS Supply Chain and the Department of Health, through which suppliers are audited and assessed by a third party notified body. The responsibility is with the supplier to ensure there is continual progress and regular risk assessment and review, to mitigate potential ethical and labour risks in the supply chain.

This has been embedded since 2012 and many of our members have improved to obtain level 2 and 3 on the framework.

ABHI is committed to promoting good ethical practice amongst members, we see this as integral and essential for improving labour standards in both single use and reusable surgery instrument manufacturing.

ABHI Code of Business Practice

At ABHI, we place ethical compliance at the heart of the medical technology industry. Healthcare professionals and patients must feel they can be confident in our ethical standards at all times, so they can work with us to improve the innovations we develop.

We have been working hard for several years to help member and other companies reach the highest standards – both as organisations and as individuals at all levels.

It is a condition of ABHI membership that a company adheres to the ethical standards in the ABHI Code of Business Practice. The Code stipulates minimum standards for members’ business practices in the UK, Europe and elsewhere.

More information can be found at www.abhicodeofpractice.org.uk
ABHI Member details

Surgical Holdings
7-9 Parkside Centre
Potters Way
Southend-on-Sea
Essex
SS2 5SJ

info@surgicalholdings.co.uk
www.surgicalholdings.co.uk
01702 602050